2018

MATRIZ PROSPETIVA

Município de Oleiros

Índice

Indice	1
Índice de figuras	3
Índice de quadros	6
Município de Oleiros	7
População	8
Agência Regional de Energia	8
Matriz energética	10
Nota Metodológica	10
Vetores Energéticos	11
Consumos Setoriais	13
Índices e Indicadores de Densidade e Intensidade Energética	21
Desagregação subsetorial de consumos	54
Comparação de indicadores de Oleiros com Portugal Continental	57
Matriz de Emissões	58
Nota Metodológica	58
Emissões Setoriais	59
Emissões por Vetor Energético	62
Produção endógena de energia	65

Índice de figuras

Figura 1- Localização geográfica do município de Oleiros	7
Figura 2- Evolução da população residente no período de 2000 a 2016	8
Figura 3- Consumo de Energia por Vetor Energético em 2016 [%]	11
Figura 4- Consumo de Energia por Vetor Energético em 2020 [%]	12
Figura 5- Consumo de Energia por Vetor Energético em 2030 [%]	12
Figura 6- Consumo de Energia por Vetor Energético em 2050 [%]	13
Figura 7- Consumo de Energia Elétrica por Setor de Atividade em 2016[%]	14
Figura 8- Consumo de Energia Elétrica por Setor de Atividade em 2020 [%]	14
Figura 9- Consumo de Energia Elétrica por Setor de Atividade em 2030 [%]	15
Figura 10- Consumo de Energia Elétrica por Setor de Atividade em 2050 [%]	15
Figura 11- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2016 [%]	16
Figura 12- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2020 [%]	17
Figura 13- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2030 [%]	17
Figura 14- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2050 [%]	18
Figura 15- Consumo Total de Energia por Setor de Atividade em 2016 [%]	19
Figura 16- Consumo Total de Energia por Setor de Atividade em 2020 [%]	19
Figura 17- Consumo Total de Energia por Setor de Atividade em 2030 [%]	20
Figura 18- Consumo Total de Energia por Setor de Atividade em 2050 [%]	20
Figura 19- Consumo de Energia Final [MWh/Ano]	21
Figura 20- Intensidade Energética do Concelho [2000=100%]	22
Figura 21 - Intensidade Energética por Setor de Atividade [MWh/M€/ano]	23
Figura 22 - Consumo de Energia por Habitante [MWh/hab/ano]	24
Figura 23 - Consumo Total de Energia no Setor Doméstico [MWh/ano]	25
Figura 24 - Consumo Total de Energia no Setor Indústria [MWh/ano]	26

Figura 25 - Consumo Total de Energia no Setor Serviços [MWh/ano]
Figura 26 - Consumo Total de Energia no Setor Agrícola [MWh/ano]
Figura 27 - Consumo Total de Energia no Setor Transportes [MWh/ano]
Figura 28 - Consumo Total de Energia Elétrica [MWh/ano]
Figura 29 - Consumo Total de Energia Elétrica no Setor Doméstico [MWh/ano]31
Figura 30 - Consumo de Energia Elétrica no Setor Industrial [MWh/ano]
Figura 31 - Consumo Total de Energia Elétrica no Setor Serviços [MWh/ano]
Figura 32 - Consumo Total de Energia Elétrica em Serviços de Abastecimento de Água [MWh/ano]. 34
Figura 33 - Consumo Total de Energia Elétrica no Setor Turismo – Restauração [MWh/ano] 35
Figura 34 - Consumo Total de Energia Elétrica no Setor Turismo – Hotelaria [MWh/ano]
Figura 35 - Consumo Total de Energia Elétrica por Habitante [MWh/hab/ano]
Figura 36 - Consumo de Energia Elétrica no Setor Doméstico por Habitante [MWh/hab/ano] 38
Figura 37 - Consumo de Energia Elétrica por Consumidor Industrial [MWh/cons/ano]
Figura 38 - Consumo Total de Gás Butano e de Gás Propano [MWh/ano]40
Figura 39 - Consumo Total de Gasolinas e Gás Auto [MWh/ano]
Figura 40 - Total de Gasóleo Rodoviário [MWh/ano]
Figura 41 - Consumo Total de Outros Gasóleos [MWh/ano]
Figura 42 - Consumo Total de Combustíveis Petrolíferos [MWh/ano]
Figura 43 - Consumo Total de Energia de Origem Petrolífera no Setor Transportes [MWh/ano] 45
Figura 44 - Consumo Total de Energia do Setor Doméstico por Edifício de Habitação e por Alojamento [MWh/aloj/ano] [MWh/edif/ano]
Figura 45 - Consumo Total de Energia Elétrica em Iluminação Pública [MWh/ano]47
Figura 46 - Custo da Energia Elétrica Consumida em Iluminação Pública no Total de Despesas Municipais [%]
Figura 47 - Consumo Total de Energia por Trabalhador por Conta de Outrem no Setor Industrial e Serviços [MWh/trab/ano]

Figura 48 - Consumo Total de Energia no Setor Agrícola por Custo do Trabalho [MWh/€/ano] 50
Figura 49 - Consumo Total de Energia no Setor Serviços por Custo do Trabalho [MWh/€/ano] 51
Figura 50 - Consumo Total de Energia no Setor Industrial por Custo de Trabalho [MWh/€/ano] 52
Figura 51 - Custo da Energia Elétrica Consumida no Setor Industrial por Custo do Trabalho [MWh/€/ano]53
Figura 52 - Emissões de CO ₂ por Setor de Atividade em 2016 [%]
Figura 53 - Emissões de CO ₂ por Setor de Atividade em 2020 [%]
Figura 54 - Emissões de CO ₂ por Setor de Atividade em 2030 [%]
Figura 55 - Emissões de CO ₂ por Setor de Atividade em 2050 [%]
Figura 56 - Emissões de CO ₂ por Vetor Energético Consumido em 2016 [%]
Figura 57 - Emissões de CO ₂ por Vetor Energético Consumido em 2020 [%]
Figura 58 - Emissões de CO ₂ por Vetor Energético Consumido em 2030 [%]
Figura 59 - Emissões de CO ₂ por Vetor Energético Consumido em 2050 [%]
Figura 60 - Repartição da Produção Renovável de Energia em Portugal por Fonte Energética em 2016
Figura 61 - Repartição da Produção Renovável de Energia no Concelho de Oleiros por Fonte

Índice de quadros

Quadro 1 - Consumo de Energia Elétrica por Subsetor (2016).	54
Quadro 2 - Vendas de Combustíveis Petrolíferos por Subsetor (2016).	56
Quadro 3 - Comparação dos principais indicadores energéticos de Oleiros com Portugal Continent (2016).	
Quadro 4 - Produção Renovável de Energia em Portugal Continental por Fonte Energética (2016)	55
Quadro 5 - Produção Renovável de Energia Elétrica no Concelho de Oleiros por Fonte Energética (2016)	

Município de Oleiros

O município de Oleiros localiza-se na região Centro (NUTS II) e sub-região do Pinhal Interior Sul (NUTS III). O concelho estende-se numa área de cerca de 471 Km², limitada a norte pelo município do Fundão, a este por Castelo Branco, a sul por Proença-a-Nova, a sudoeste pela Sertã e a noroeste por Pampilhosa da Serra.

O Município de Oleiros tem cerca de 5 197 habitantes (ano 2016), que se distribuem por 10 freguesias: Álvaro, Cambas, Estreito-Vilar Barroco, Isna, Madeirã, Mosteiro, Oleiros-Amieira, Orvalho, Sarnadas de São Simão e Sobral (figura 1).

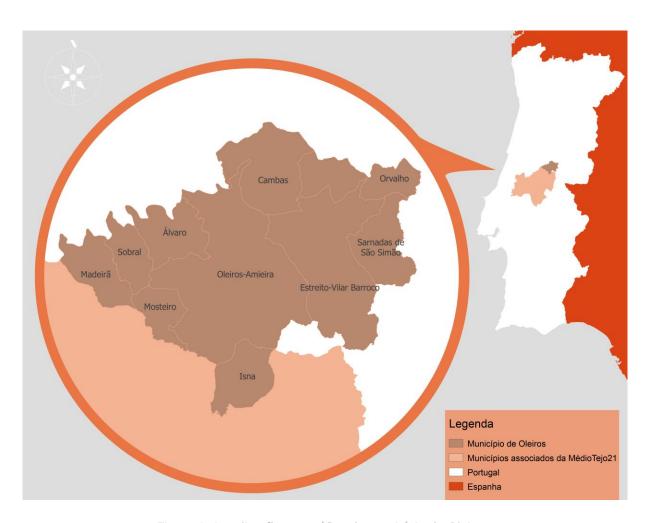


Figura 1- Localização geográfica do município de Oleiros.

População

Oleiros tem uma densidade populacional (11 habitantes/Km², 2016) inferior à densidade populacional média do País (112 habitantes/Km², 2016). De acordo com dados divulgados pelo INE a população residente no município diminuiu ligeiramente na última década.

A figura 2 ilustra a evolução da população residente no concelho no período de 2000 a 2016.

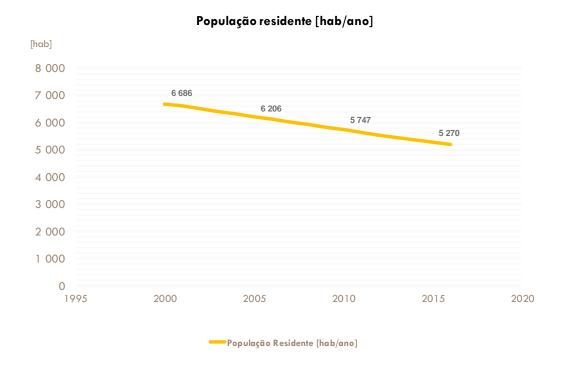


Figura 2- Evolução da população residente no período de 2000 a 2016.

Agência Regional de Energia

Procurando promover um desenvolvimento sustentável no concelho e na região em que se insere, Oleiros é um dos municípios associados da Agência Regional de Energia e Ambiente do Médio Tejo e Pinhal Interior foi fundada em 29 de maio 2009.

Sendo uma associação sem fins lucrativos tem por missão contribuir para a sustentabilidade e inovação na sua região de influência. Como tal, apesar da sua origem ser municipal, a MédioTejo21 conta também com diversas empresas associadas, estando aberta a operadores do setor energético, empresas, associações, escolas e entidades do sistema científico e tecnológico relevantes para o desenvolvimento sustentável da região.

O espaço de intervenção da agência de energia MédioTejo21 - Agência Regional de Energia e Ambiente do Médio Tejo e Pinhal Interior Sul compreende os municípios Abrantes, Alcanena, Constância, Entroncamento, Ferreira do Zêzere, Mação, Oleiros, Ourem, Proença-a-Nova, Sardoal, Sertã, Tomar, Torres Novas, Vila de Rei e Vila Nova da Barquinha.

A agência visa contribuir para um modelo de desenvolvimento sustentável, na procura de soluções inovadoras com menor impacte ambiental e introduzir conceitos de eficiência energética e ambiental nos processos de planeamento e de ordenamento do território.

Matriz energética

Com a execução da matriz energética do município de Oleiros pretende-se caracterizar os consumos energéticos locais e as respetivas tendências evolutivas, permitindo fundamentar processos de tomada de decisão, a nível local e regional e, consequentemente, progredir no aumento da sustentabilidade e na melhoria de qualidade de vida das populações.

A matriz energética é também um instrumento de avaliação do potencial de desenvolvimento do sistema energético do município e uma ferramenta fundamental para a definição de estratégias ambientais. A análise previsional realizada permite atuar proactivamente, na gestão da procura e da oferta, no sentido de promover a sustentabilidade energética do município.

Nota Metodológica

Na presente análise propõem-se cenários de evolução da procura energética para um horizonte temporal que se encerra em 2050.

Os cenários são calculados através de um modelo matemático que toma por base as projeções disponíveis, através de organizações internacionais e organismos públicos responsáveis por planeamento e estudo prospetivo. Estas projeções referem-se a variáveis macroeconómicas e demográficas. Complementarmente são considerados os cenários de evolução do sistema energético nacional, estimados para o espaço nacional.

Entre o conjunto de entidades cujas referências foram consideradas destaca-se o Eurostat, a Agência Europeia do Ambiente, a Agência Internacional de Energia, a Direção-Geral de Mobilidade e Transportes da Comissão Europeia, a Direção-Geral de Energia da Comissão Europeia, o Centro Comum de Investigação da Comissão Europeia (JRC), a Organização para a Cooperação e Desenvolvimento Económico e naturalmente os organismos nacionais relevantes como sejam a Direção Geral de Energia e Geologia, a Agência Portuguesa do Ambiente, a Entidade Reguladora dos Serviços Energéticos e o Instituto Nacional de Estatística.

O cenário macroeconómico e energético proposto pela Comissão Europeia, em 2016 no "EU Energy, transport and GHG emissions trends to 2050" destaca-se de entre os elementos considerados como referência dos cenários propostos. Esses cenários utilizaram como recurso o modelo PRIMES, apoiado por alguns modelos mais especializados e bases de dados, como os que se orientam para a previsão da evolução dos mercados energéticos internacionais. Considera-se ainda, como referência, o modelo POLES do sistema energético mundial, o GEM-E3, e alguns modelos macroeconómicos.

Os resultados propostos decorrem da utilização, para o território considerado, de um modelo específico desenvolvido pela IrRADIARE, Science for Evolution[®].

Vetores Energéticos

Nas figuras seguintes são ilustrados os consumos de energia por vetor energético para os anos 2016, 2020, 2030 e 2050. Os consumos distribuem-se pelos seguintes vetores energéticos: eletricidade, gás natural, butano, propano, gasolinas e gás auto, gasóleo rodoviário, gasóleos coloridos (gasóleo colorido e gasóleo colorido para aquecimento) e outros combustíveis industriais (fuelóleo, petróleo e coque de petróleo). Deste modo, visualiza-se a evolução da proporção do consumo de cada vetor energético no consumo total de energia consumida no município.

No ano 2016 (figura 3) observa-se uma utilização relativamente variada e distribuída de vetores energéticos utilizados no município, destacando-se os consumos de gasóleo rodoviário (54%), de eletricidade (33%) e de gasóleos coloridos (5%). Destaca-se o facto de não terem sido identificados consumos de gás natural no município, no período em análise (2000 a 2050).

Consumo de Energia por Vetor Energético (2016) Butano 1% Propano 4%

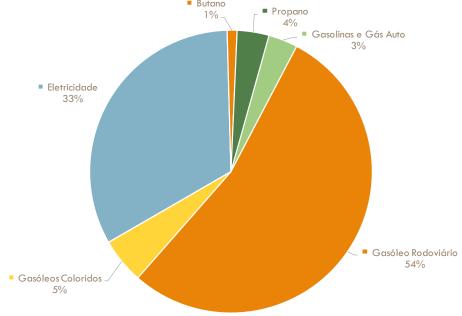


Figura 3- Consumo de Energia por Vetor Energético em 2016 [%]

Consumo de Energia por Vetor Energético (2020)

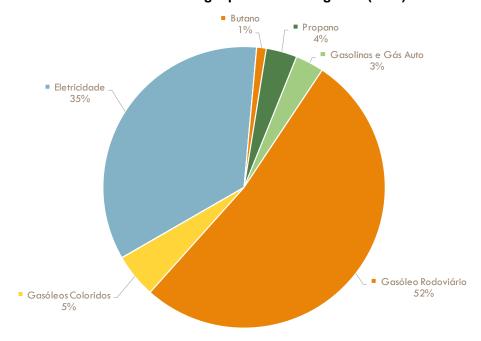


Figura 4- Consumo de Energia por Vetor Energético em 2020 [%]

Consumo de Energia por Vetor Energético (2030)

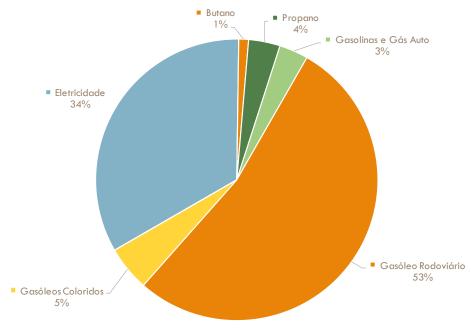


Figura 5- Consumo de Energia por Vetor Energético em 2030 [%]

Consumo de Energia por Vetor Energético (2050)

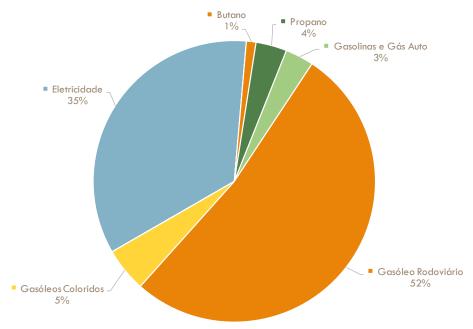


Figura 6- Consumo de Energia por Vetor Energético em 2050 [%]

Consumos Setoriais

Nas figuras abaixo são apresentados os consumos de energia elétrica por setor de atividade para os anos 2016, 2020, 2030 e 2050. Os consumos de energia apresentados são referentes aos principais setores consumidores de eletricidade: doméstico, industrial, agricultura, serviços, serviços de abastecimento de água, turismo e iluminação pública. Deste modo, é possível observar a evolução da proporção energética de cada setor no consumo total de energia elétrica do município, ao longo do período de projeção.

O gráfico da figura 7, relativo aos consumos de energia elétrica por setor de atividade no ano 2016, põe em evidência as elevadas necessidades elétricas na indústria e no setor doméstico que consomem respetivamente cerca de 51% e 24% do total de energia elétrica utilizada no concelho. A utilização de eletricidade em iluminação de vias públicas representa também uma parcela relevante do consumo (9%).

Consumo de Energia Elétrica por Setor de Atividade (2016)

Figura 7- Consumo de Energia Elétrica por Setor de Atividade em 2016[%]

Consumo de Energia Elétrica por Setor de Atividade (2020) Illuminação de Vias Públicas 8% Públicos 6% Abastecimento de Água 1%

Figura 8- Consumo de Energia Elétrica por Setor de Atividade em 2020 [%]

Consumo de Energia Elétrica por Setor de Atividade (2030)

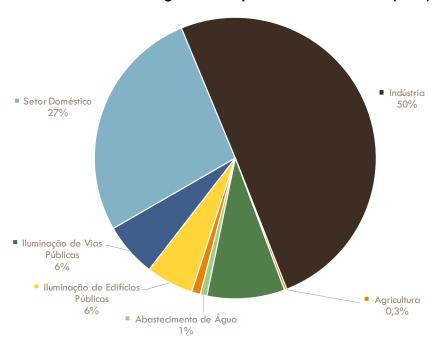


Figura 9- Consumo de Energia Elétrica por Setor de Atividade em 2030 [%]

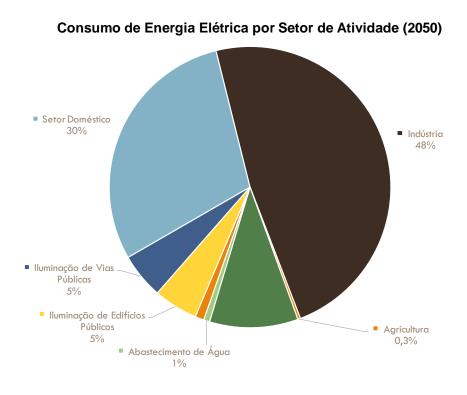


Figura 10- Consumo de Energia Elétrica por Setor de Atividade em 2050 [%]

Nas figuras seguintes são ilustrados os consumos de combustíveis fósseis por setor de atividade para os anos 2016, 2020 e 2030 e 2050. Os consumos representados são referentes aos principais setores consumidores deste tipo de combustíveis, nomeadamente, os setores doméstico, industrial, agricultura, serviços e transportes. Deste modo, é possível observar a evolução da proporção da procura por combustíveis fósseis de cada setor no consumo total do município, ao longo do período de projeções.

Observando o gráfico referente à procura de combustíveis de origem fóssil por setor de atividade no ano 2016 (figura 11), identifica-se a predominância da procura do setor transportes, ao qual correspondem 85% dos consumos, seguindo-se o setor da agricultura, que representa 7% dos consumos, e o setor serviços com 5% dos consumos.

Consumo de Combustíveis Fósseis por Setor de Atividade (2016)

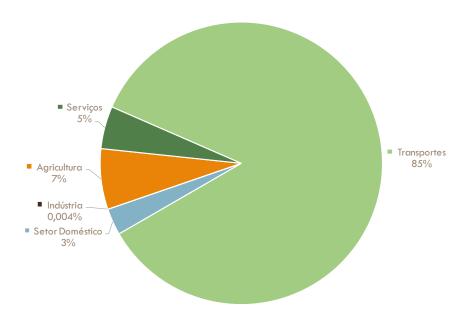


Figura 11- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2016 [%]

Consumo de Combustíveis Fósseis por Setor de Atividade (2020)

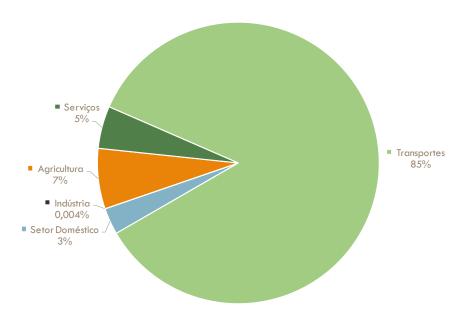


Figura 12- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2020 [%]

Consumo de Combustíveis Fósseis por Setor de Atividade (2030)

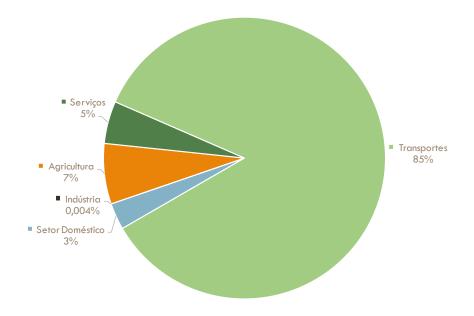


Figura 13- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2030 [%]

Consumo de Combustíveis Fósseis por Setor de Atividade (2050)

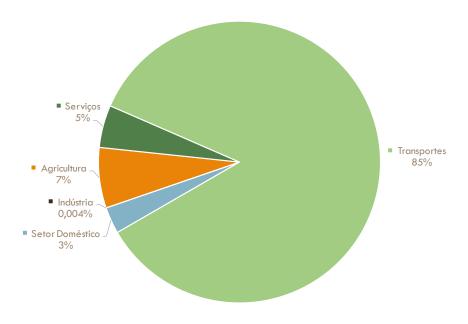


Figura 14- Consumo Total de Combustíveis Fósseis por Setor de Atividade em 2050 [%]

As figuras abaixo apresentadas ilustram os consumos de energia total por setor de atividade para os anos 2016, 2020, 2030 e 2050. Os consumos totais de energia apresentados são referentes aos principais setores consumidores de energia no município, designadamente, os setores doméstico, industrial, agricultura, serviços e transportes, sendo possível observar a evolução da proporção energética de cada setor no consumo total de energia do município, ao longo do período de análise.

Observando o gráfico apresentado na figura 15, verifica-se uma predominância da procura energética no setor transportes no ano 2016, correspondente a 57% da procura de energia, seguido do setor industrial e do setor de serviços, com 17% e 11% dos consumos, respetivamente.

Consumo Total de Energia por Setor de Atividade (2016)

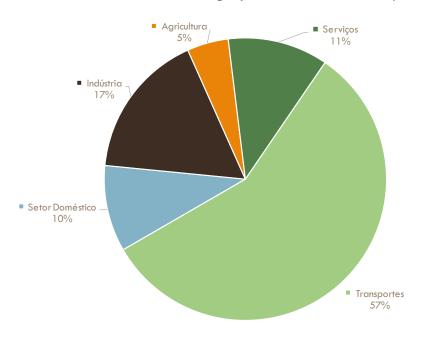


Figura 15- Consumo Total de Energia por Setor de Atividade em 2016 [%]

Consumo Total de Energia por Setor de Atividade (2020)

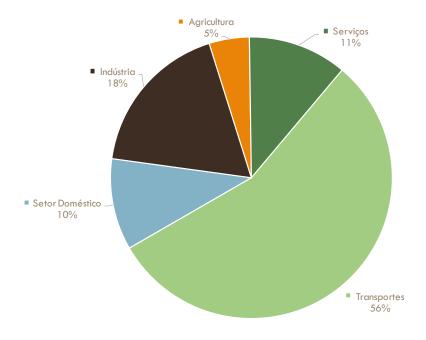


Figura 16- Consumo Total de Energia por Setor de Atividade em 2020 [%]

Consumo Total de Energia por Setor de Atividade (2030)

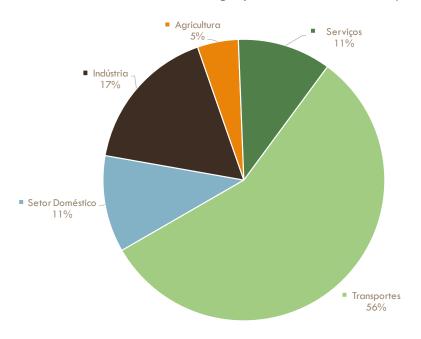


Figura 17- Consumo Total de Energia por Setor de Atividade em 2030 [%]

Consumo Total de Energia por Setor de Atividade (2050)

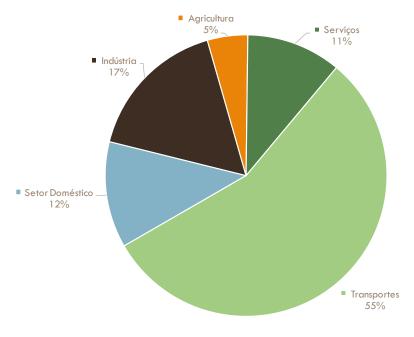


Figura 18- Consumo Total de Energia por Setor de Atividade em 2050 [%]

Índices e Indicadores de Densidade e Intensidade Energética

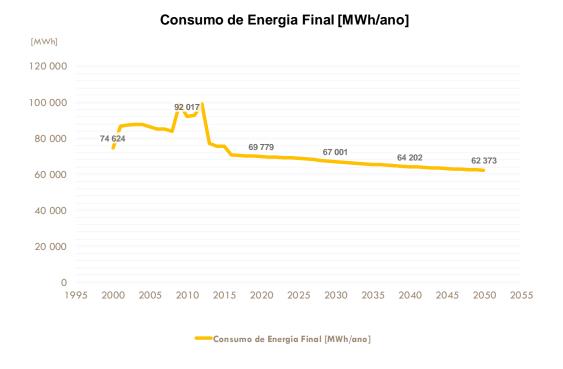


Figura 19- Consumo de Energia Final [MWh/Ano]

Na figura 19 apresenta-se a variação do consumo de energia final ao longo do período considerado. O consumo representado resulta do somatório de todos os consumos de energia do concelho, independentemente da fonte de energia e do setor consumidor. Deste modo, para o cálculo do consumo de energia final procedeu-se ao somatório dos consumos locais de energia elétrica e combustíveis de origem petrolífera, para cada ano.

De acordo com o ilustrado, verifica-se um aumento da procura energética do concelho de 2000 a 2013, com algumas reduções dos consumos durante este período. No período seguinte observa-se uma tendência geral de diminuição, mais acentuada até 2015, continuando a diminuir moderadamente até ao ano 2050.

O cenário apresentado é caracterizado pela aceleração da implementação de medidas de eficiência energética, com particular incidência no período de 2010 a 2020.

Intensidade Energética (2000 = 100)

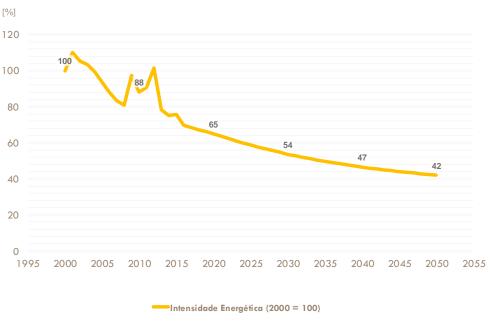


Figura 20- Intensidade Energética do Concelho [2000=100%]

O gráfico acima apresentado é representativo da evolução da intensidade energética, indicador energético definido pelo quociente entre o consumo de energia e o PIB local. É de salientar que a intensidade energética foi determinada considerando a energia final e não a energia primária. A abordagem adotada reflete a natureza local das medidas de gestão de consumo privilegiando a atuação, no sentido, por exemplo da eficiência energética, na procura face à oferta de serviços energéticos.

Pela análise do gráfico verifica-se que de 2000 a 2001 ocorre um aumento dos consumos. A partir de 2001 observa-se uma tendência global de diminuição da intensidade energética do município até 2050 de cerca de 60%, intercalado por um aumento dos consumos no período de 2008 a 2012. Esta quebra é impulsionada pela diminuição da intensidade energética dos setores serviços e transportes.

Não obstante, a intensidade energética do município deverá reduzir significativamente em resultado de um eventual aumento da eficiência energética nas atividades desenvolvidas no território.

Intensidade Energética por Setor de Atividade [MWh/M€]

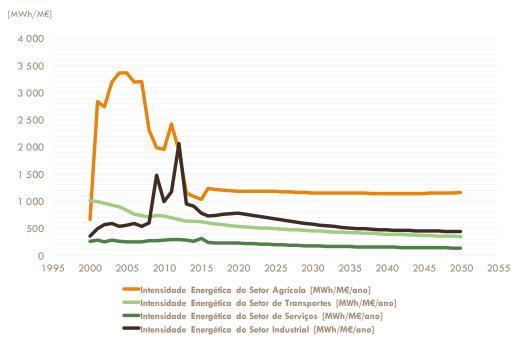


Figura 21 - Intensidade Energética por Setor de Atividade [MWh/M€/ano]

Na figura 21 apresenta-se a variação da intensidade energética por setor de atividade. A intensidade energética dos setores industrial, serviços e agrícola corresponde ao quociente entre o consumo total de energia do setor e o VAB do setor a que respeita. A intensidade energética dos transportes é determinada pelo quociente entre o consumo de total de energia do setor e o PIB local.

O setor agrícola apresenta um aumento da intensidade energética de 2000 a 2013, com algumas oscilações significativas durante este período. De 2013 a 2015 verifica-se uma diminuição, seguido de um ligeiro aumento até 2016. Após 2016 observa-se que os consumos tendem a estabilizar, até 2045. Após 2045 observa-se um aumento ligeiro até 2050.

Observando a curva representativa do setor transportes verifica-se uma diminuição global da intensidade energética 2000 a 2050.

No que respeita ao setor serviços, é ilustrada uma tendência de aumento de 2000 a 2015 ao nível da sua intensidade energética, com pequenas oscilações. Destaca-se a inversão desta tendência no período posterior, ao longo do qual a intensidade energética do setor tende a decrescer até 2050.

A intensidade energética da indústria apresenta um aumento no período de 2000 a 2011, apesar de serem evidenciadas algumas variações durante este período. Após 2011 observa-se uma diminuição até 2016, seguido de um novo aumento até 2020. De 2020 até ao final do período em análise os consumos decrescem.

A evolução decrescente da intensidade energética é um dos principais indicadores de aumento da eficiência energética ao nível dos diversos setores económicos, na medida em que tem em consideração não apenas as necessidades energéticas setoriais, como também a evolução da atividade desenvolvida.

Consumo de Energia por Habitante [MWh/hab/ano] [MWh/hab] Consumo de Energia por Habitante [MWh/hab/ano]

Figura 22 - Consumo de Energia por Habitante [MWh/hab/ano]

O gráfico acima apresentado ilustra o consumo de energia por habitante. Este indicador energético foi determinado a partir da divisão do consumo de energia final pela população residente no concelho.

O gráfico apresentado revela um aumento do consumo energético *per capita* no período de 2000 a 2009 e de 2009 a 2013. No período de 2013 a 2016 verifica-se uma diminuição da utilização de energia *per capita*, seguida de um novo aumento até 2050.

Nos últimos anos tem-se verificado uma crescente introdução de soluções de melhoria de eficiência energética, transversal a todos os setores de atividade, em particular no período pós 2012, resultado numa utilização mais eficiente da energia, impulsionada pela implementação de políticas locais, nacionais e europeias de melhoria de eficiência energética.

É, no entanto, expectável um aumento da procura de energia a curto e médio prazo, em particular de eletricidade, associada essencialmente à utilização crescente de equipamentos elétricos e eletrónicos e à crescente melhoria de condições de conforto.

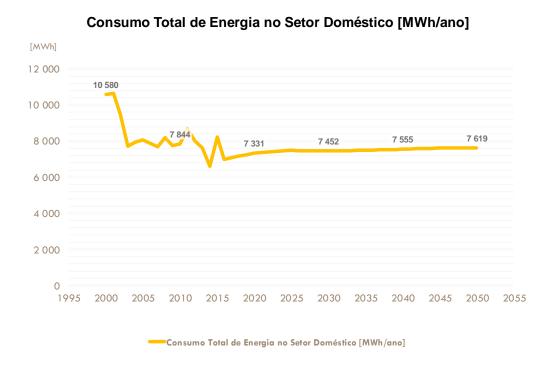


Figura 23 - Consumo Total de Energia no Setor Doméstico [MWh/ano]

A figura 23 representa o consumo total de energia consumida no setor doméstico, que resulta do somatório dos consumos domésticos de energia elétrica, gás natural e combustíveis de origem petrolífera, para cada ano do período em análise.

O gráfico apresentado revela uma diminuição global do consumo total de energia até 2005, com algumas oscilações durante este período. No período subsequente é observado um aumento dos consumos energéticos domésticos até 2015, seguido de um decréscimo até 2016. Após 2016 e até ao final do período em análise os consumos aumentam ligeiramente.

Os resultados apresentados resultam essencialmente da implementação de medidas de melhoria de eficiência energética em edifícios de habitação, integração de renováveis e adoção de comportamentos mais eficientes.

É expectável, no entanto, uma inversão desta tendência no período 2015-2050, em linha com a crescente procura por níveis elevados de conforto e qualidade de vida. Também as alterações na estrutura familiar, nomeadamente o aumento de famílias monoparentais e

agregados apenas com um elemento, resultam num aumento do número de habitações, segundo as previsões demográficas, que se reflete num aumento dos consumos energéticos domésticos. Estes aumentos estão fundamentalmente relacionados com necessidades de climatização, aquecimento de águas sanitárias e consumos energéticos de equipamentos tipicamente associados a edifícios.

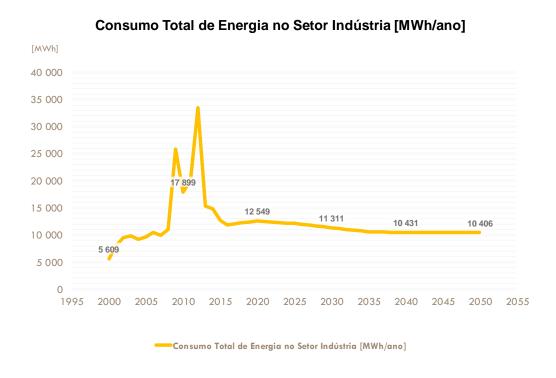


Figura 24 - Consumo Total de Energia no Setor Indústria [MWh/ano]

O gráfico apresentado é relativo ao consumo total de energia no setor da indústria, tendo sido obtido pela soma dos consumos de energia elétrica, gás natural e combustíveis de origem petrolífera neste setor.

Analisando a curva apresentada verifica-se um aumento do consumo industrial de energia no período de 2000 a 2009 e 2010 a 2012. De 2012 a 2015 observa-se uma quebra da procura energética do setor. Após 2015 o consumo de energia no setor da indústria aumenta ligeiramente até 2020, observando-se uma tendência de diminuição moderada dos consumos energéticos no setor nos anos seguintes.

É expectável que os aumentos de consumo energético associados a uma eventual recuperação da atividade económica do setor e ao reforço da mecanização e automatização de processos, como vetor de promoção de qualidade e de produtividade, sejam atenuados pelas tendências de aumento da eficiência energética do setor.

Consumo Total de Energia no Setor Serviços [MWh/ano]

Figura 25 - Consumo Total de Energia no Setor Serviços [MWh/ano]

A figura 25 é ilustrativa da procura de energia pelo setor de serviços, consumo resultante do somatório dos consumos de energia elétrica, gás e combustíveis de origem petrolífera, para cada ano.

Quanto à procura energética do setor serviços, a curva ilustra um aumento geral do consumo de 2000 a 2015, intercalados com períodos de redução dos consumos. Após 2015 observa-se uma diminuição acentuada do uso de energia até 2016, seguindo-se uma diminuição moderada até 2050.

Os ganhos em eficiência energética resultantes de medidas de *ecodesign*, melhoria do desempenho energético de edifícios, implementação de tecnologias eficientes e alteração de comportamentos, compensam os efeitos do aumento da atividade setorial até 2050, levando a uma procura de energia final em 2050 se mantenha inferior aos valores de 2015.

Consumo Total de Energia no Setor Agrícola [MWh/ano]

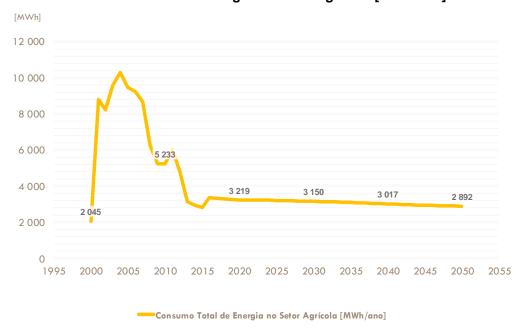


Figura 26 - Consumo Total de Energia no Setor Agrícola [MWh/ano]

A figura 26 apresentada ilustra a evolução do consumo total de energia no setor da agricultura, para o período em análise, de 2000 a 2050. A curva apresentada foi obtida através do somatório dos consumos anuais de energia elétrica, gás e combustíveis de origem petrolífera verificados no setor.

A figura coloca em evidência uma tendência de aumento no consumo de 2000 a 2005, com algumas oscilações, seguido de uma diminuição acentuada até 2010. Após o ano 2010 observa-se um ligeiro aumento até 2011, seguindo-se um novo decréscimo dos consumos até 2015. De 2015 a 2016 ocorre um ligeiro aumento, a partir de 2016 as necessidades energéticas do setor decrescem de forma moderada até 2050.

A implementação de iniciativas de melhoria de eficiência energética no setor agrícola apresenta um impacto significativo nos consumos do setor, em particular ao nível da redução das necessidades energéticas em irrigação (sistemas de bombagem) e tração.

Consumo Total de Energia no Setor Transportes [MWh/ano]

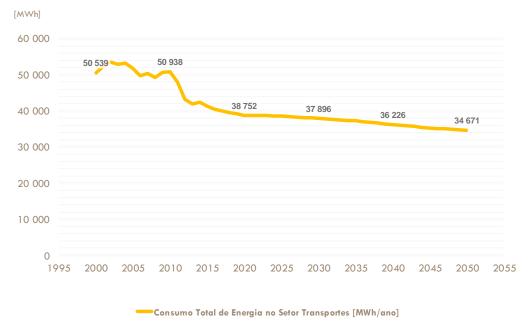


Figura 27 - Consumo Total de Energia no Setor Transportes [MWh/ano]

A figura 27 representada é ilustrativa do consumo total de energia do setor dos transportes, representando a soma dos consumos anuais de energia elétrica, gás natural e combustíveis de origem fóssil do setor.

Analisando a curva apresentada verifica-se um aumento do consumo industrial de energia no período de 2000 a 2002 e 2008 a 2010, após este ano revela-se uma redução da procura energética que se mantém até 2050.

Apesar do contínuo aumento da atividade do setor, a procura de energia para transportes decresce para níveis inferiores aos observados no início do período em análise. Estes resultados são influenciados pela instabilidade dos preços dos combustíveis petrolíferos – em particular na última década - pela melhoria significativa da eficiência dos veículos de transportes e pela introdução de medidas de eficiência energética – formação em ecocondução, tecnologias de monitorização de desempenho energético dos veículos e de redução de consumos de combustível.

A estabilização do uso de energia no final do período em análise poderá estar associada a uma possível saturação do setor no final do período em análise.

Consumo Total de Energia Elétrica [MWh/ano]

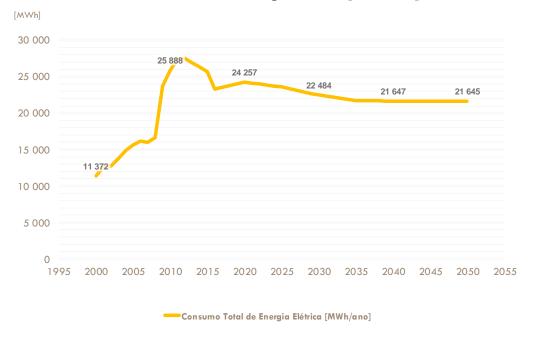


Figura 28 - Consumo Total de Energia Elétrica [MWh/ano]

Na figura 28 apresenta-se o consumo total de energia elétrica do concelho, definida pelo somatório dos consumos setoriais de energia elétrica.

Pela análise dos dados apresentados, observa-se que a procura deste vetor energético apresenta um aumento de 2000 a 2011, diminuindo de 2011 a 2016.

Após 2016 observa-se um aumento até 2020. De 2020 a 2035 os consumos de eletricidade diminuem ligeiramente. Após 2035 regista-se uma estabilização da procura até 2050.

Paralelamente à progressiva implementação de medidas de eficiência energética observase uma tendência para um maior uso de eletricidade em detrimento de outras fontes de energia. Esta tendência de eletrificação é impulsionada, fundamentalmente, pela substituição do uso de combustíveis fósseis em aquecimento e arrefecimento ambiente, assim como no setor de transportes, pelo aumento da utilização de equipamentos elétricos e eletrónicos.

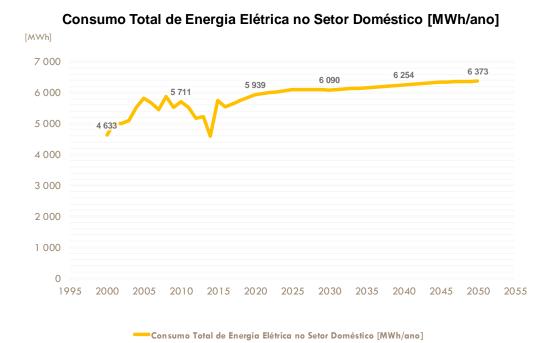


Figura 29 - Consumo Total de Energia Elétrica no Setor Doméstico [MWh/ano]

A figura 30 ilustra a evolução prevista do consumo de energia elétrica no setor doméstico, para o período de 2000 a 2050.

A curva apresentada ilustra a utilização crescente de energia elétrica no setor doméstico ao longo do período de 2000 a 2010, apresentando, contudo, algumas oscilações durante este período. Entre os anos de 2010 e 2015 ocorre uma inversão desta tendência. Entre 2015 e 2050 a procura doméstica de eletricidade volta a aumentar.

A implementação de medidas de melhoria de eficiência energética e de desempenho energético dos edifícios, integração de renováveis e alteração de comportamentos, com maior incidência no período 2010 a 2020, contribui para uma redução e posterior moderação do uso de eletricidade no setor doméstico.

A procura crescente de conforto nas habitações leva a um novo aumento do uso de eletricidade. O uso de sistemas de ar condicionado para climatização de edifícios residenciais, por exemplo, assim como o maior recurso a equipamentos eletrónicos domésticos e a tecnologias de comunicação e informação, que independentemente do local de uso podem possuir baterias tipicamente carregadas em casa, induzem um aumento do consumo de eletricidade no setor doméstico por habitante.

Consumo Total de Energia Elétrica no Setor Industrial [MWh/ano]

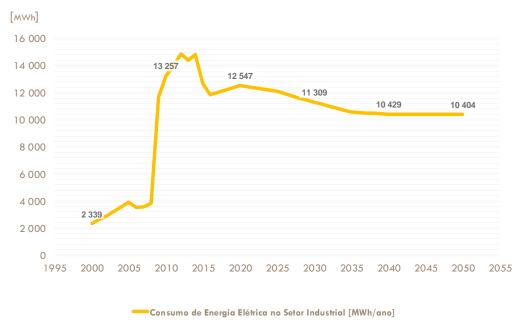


Figura 30 - Consumo de Energia Elétrica no Setor Industrial [MWh/ano]

Na figura 30 é apresentada a evolução do consumo de energia elétrica no setor industrial, para o período de 2000 a 2050.

Pela curva de consumos apresentada, observa-se que a procura de energia elétrica pelo setor industrial aumenta de forma acentuada entre 2000 e 2015.

De 2015 a 2017 o consumo de energia elétrica na indústria diminui, seguido de um aumento até 2020. Este aumento pode ser impulsionado pela tendência crescente de mecanização e automatização de processos, associada a uma eventual recuperação da atividade económica.

Após 2020 observa-se um decréscimo até 2035 e de 2035 a 2050 os consumos de eletricidade no setor mantêm-se relativamente estáveis.

Consumo Total de Energia Elétrica no Setor dos Serviços [MWh]

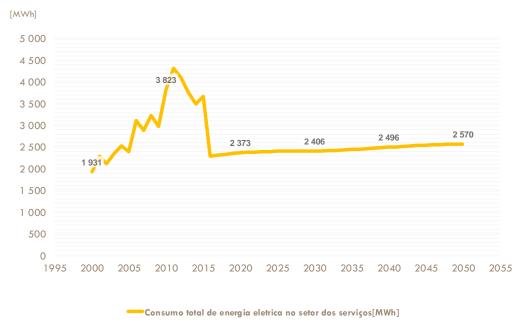


Figura 31 - Consumo Total de Energia Elétrica no Setor Serviços [MWh/ano]

O gráfico apresentado na figura 31 é referente ao consumo de energia elétrica no setor de serviços, ao longo do período de 2000 a 2050.

Observando a curva verifica-se um aumento do uso de eletricidade no setor serviços de 2000 a 2011, apresentando, contudo, algumas oscilações. No período seguinte a procura energética neste setor diminui até 2015, voltando a aumentar nos anos seguintes, até 2050.

A tendência evolutiva dos consumos neste setor evidencia que, apesar do aumento na qualidade do uso da energia, com novas exigências ao nível da eficiência energética a serem integradas nos investimentos em novos edifícios e infraestruturas, os consumos de energia elétrica mantêm a tendência de aumento. O crescente uso de energia elétrica para aquecimento e arrefecimento ambiente constitui um dos principais impulsionadores desta tendência.

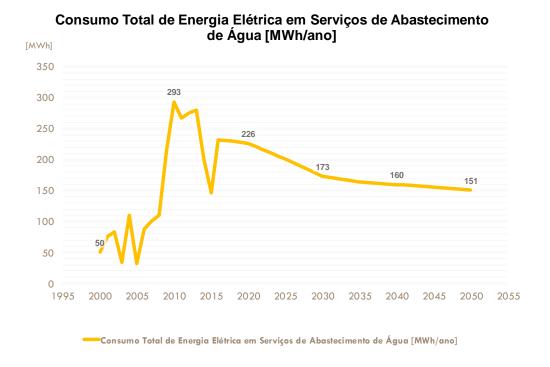


Figura 32 - Consumo Total de Energia Elétrica em Serviços de Abastecimento de Água [MWh/ano]

O gráfico anterior ilustra o consumo total de energia elétrica do setor de serviços de abastecimento de água entre 2000 e 2050.

Observa-se um aumento do consumo de energia de 2000 a 2010, intercalado por alguns períodos de redução. No período de 2010 a 2015 a procura de energia elétrica pelo setor de serviços de abastecimento de água diminui, apresentando, algumas oscilações. Os consumos de eletricidade em serviços tendem a aumentar de 2015 a 2016. Após 2016 e até ao final do período em análise, observa-se uma diminuição dos consumos.

A preocupação crescente com a qualidade da água abastecida e a reestruturação do sistema no que concerne à captação, transporte e distribuição, coincidente com a tendência para a mecanização e automatização dos sistemas de abastecimento, apresenta-se como um contributo de destaque para o aumento da procura de eletricidade. A crescente implementação de ações de sustentabilidade energética no setor poderá apresentar um contributo relevante na moderação da utilização de eletricidade pelos serviços de abastecimento de água.

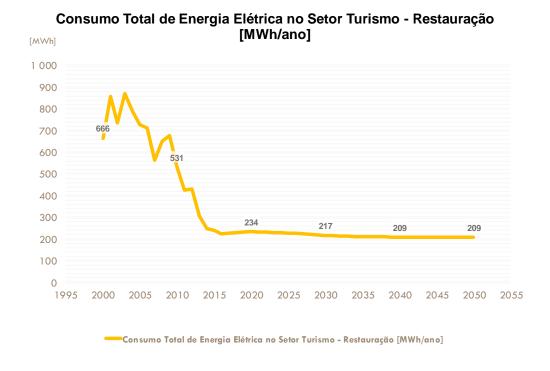


Figura 33 - Consumo Total de Energia Elétrica no Setor Turismo – Restauração [MWh/ano]

A figura 33 ilustra a evolução prevista do consumo de energia elétrica no setor do turismo, na restauração.

Pela análise do gráfico observa-se que os consumos de energia elétrica aumentam de 2000 a 2002. No período de 2002 os consumos diminuem de forma acentuada até 2016, apresentando, contudo, algumas variações. Após 2016, a utilização de eletricidade no setor hoteleiro tende a estabilizar.

A melhoria da eficiência energética no setor resulta numa moderação do crescimento do uso de eletricidade em serviços de restauração. O crescimento da procura energética deste subsetor do turismo advém das previsões de equilíbrio entre a consolidação da dimensão e tipologia de oferta e o reforço em qualidade, conforto e diversidade.

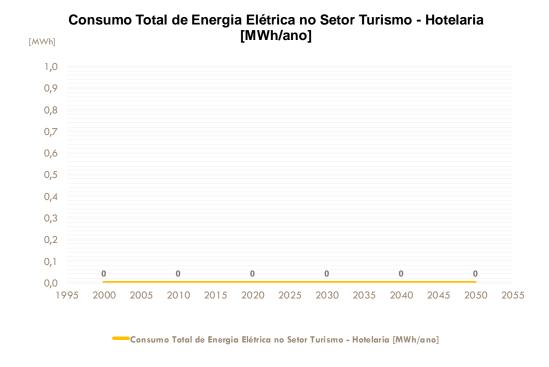


Figura 34 - Consumo Total de Energia Elétrica no Setor Turismo – Hotelaria [MWh/ano]

A figura 34 representada ilustra a evolução prevista do consumo de energia elétrica no setor turismo, na hotelaria.

Não foram identificados consumos de energia elétrica no setor do turismo - hotelaria no Município.

Consumo Total de Energia Elétrica por Habitante [MWh/hab/ano]

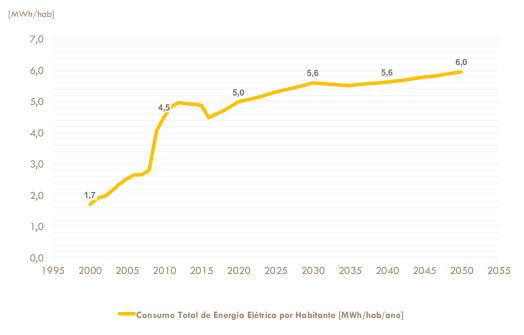


Figura 35 - Consumo Total de Energia Elétrica por Habitante [MWh/hab/ano]

O gráfico apresentado na figura 35 é ilustrativo da evolução do consumo total de energia elétrica por habitante. Este indicador energético é definido pelo quociente entre o consumo total de energia elétrica no concelho e o número de residentes.

O gráfico apresentado demonstra um aumento do consumo de eletricidade *per capita* de 2000 a 2011, seguido de uma diminuição, de 2011 a 2016. Esta redução poderá estar associada a uma eventual diminuição da atividade económica registada no final deste período.

De 2016 a 2030 verifica-se um aumento do consumo de energia elétrica por habitante, sucedido por uma nova diminuição do indicador até 2035, pondo em evidência um aumento da eficiência per capita do uso de eletricidade, possivelmente associado à melhoria da eficiência de uso da eletricidade.

Após 2035 observa-se um aumento deste indicador até 2050. Este comportamento é impulsionado pela crescente procura individual por conforto e pela alteração dos estilos de habitação.

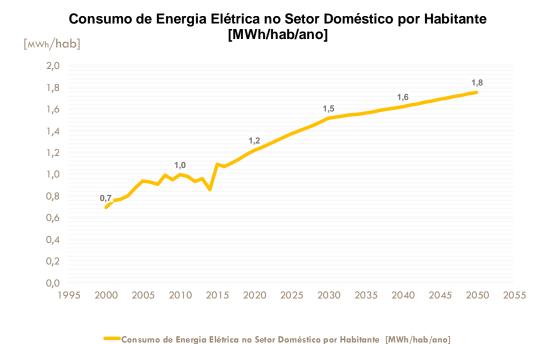


Figura 36 - Consumo de Energia Elétrica no Setor Doméstico por Habitante [MWh/hab/ano]

A figura 36 diz respeito à evolução do consumo total de energia elétrica no setor doméstico, por habitante. Este indicador energético resulta do quociente entre o consumo total de energia elétrica no setor doméstico do concelho e o número de residentes.

Pelo gráfico apresentado, verifica-se que o consumo doméstico de energia elétrica por habitante aumenta progressivamente de 2000 a 2010. De 2010 a 2015 observa-se uma diminuição deste indicador. Após 2015 segue-se um novo período de aumento que se mantém até 2050.

Conforme já referido, esta tendência advém da procura crescente de eletricidade no setor doméstico. A melhoria da qualidade de vida e aumento do conforto impulsiona o aumento dos consumos energéticos domésticos por habitante. A alteração dos estilos de habitação, com destaque para a redução do número médio de residentes por alojamento induz também um maior consumo de energia elétrica no setor doméstico, por habitante.

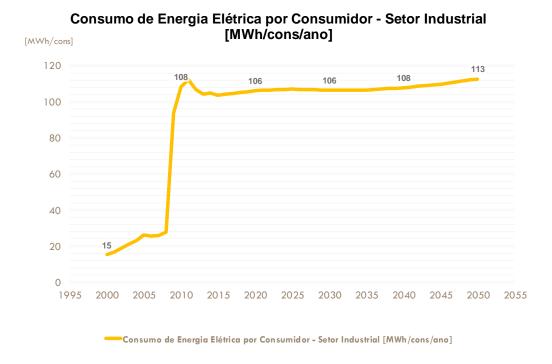


Figura 37 - Consumo de Energia Elétrica por Consumidor Industrial [MWh/cons/ano]

Na figura 37 apresenta-se a evolução do consumo de energia elétrica por consumidor industrial, para o período de 2000 a 2050.

O consumo de energia elétrica por consumidor industrial aumenta de 2000 a 2011. Após 2011 observa-se uma diminuição da procura de eletricidade até 2016. No período seguinte, a procura de eletricidade aumenta moderadamente até 2050.

O aumento da procura de energia elétrica do setor industrial por consumidor é indicador da tendência para a mecanização e automatização de processos, como mecanismo de aumento de produtividade e de qualidade. A tendência observável para moderação da procura indicia ainda o efeito do aumento da eficiência energética e do surgimento de efeitos de saturação do crescimento dos consumos específicos no setor industrial.

Consumo total de Gás Butano e de Gás Propano [MWh/ano]

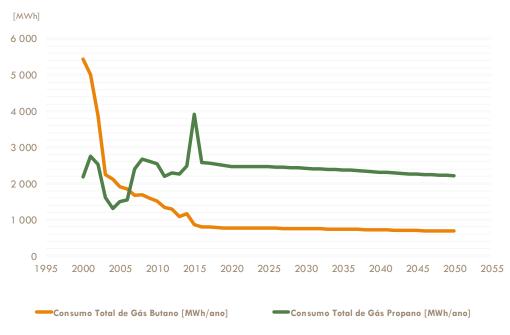


Figura 38 - Consumo Total de Gás Butano e de Gás Propano [MWh/ano]

Na figura 38 é possível comparar a evolução da procura de gás butano e de gás propano, ao longo do período em análise.

O consumo de gás butano diminui de 2000 a 2014, com algumas oscilações. Após 2014 a curva apresenta um ligeiro aumento até 2015 seguido de uma diminuição que se prolonga até 2050. O gás butano é utilizado essencialmente no setor doméstico.

Observando o gráfico verifica-se que os consumos de gás propano aumentam de 2000 a 2002, de 2006 a 2008 e de 2014 a 2015. Após 2015 a curva apresentada evidencia diminuição do uso de gás propano até 2050. Destacam-se os setores doméstico e de serviços como os principais utilizadores desta fonte de energia.

O comportamento decrescente evidenciado nas curvas apresentadas reflete a tendência de substituição destes combustíveis por outros mais seguros e cómodos e com menores impactes ambientais, nomeadamente no que respeita a emissões de CO₂, tais como o gás natural ou a eletricidade.

Consumo Total de Gasolinas e Gás Auto [MWh/ano]

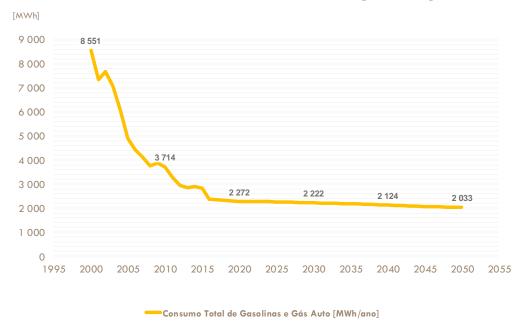


Figura 39 - Consumo Total de Gasolinas e Gás Auto [MWh/ano]

A curva apresentada na figura 39 é referente ao consumo total de gasolinas e gás auto no concelho e resulta da soma do consumo total de gasolinas e do consumo total de gás auto. O consumo total de gasolinas integra os consumos de gasolina sem chumbo 95, gasolina sem chumbo 98 e gasolina aditivada.

Como ilustrado no gráfico anterior, os consumos de gasolinas e gás auto diminuem cerca de 75% de 2000 a 2050, com algumas oscilações no período de 2002 a 2015.

A tendência de diminuição da procura reflete as variações da procura de combustíveis petrolíferos como consequência do aumento dos preços do petróleo e da procura por combustíveis mais sustentáveis e seguros, salientando-se o crescente aumento no setor dos transportes de veículos híbridos e elétricos, em substituição de veículos convencionais movidos apenas a gasolina. A saturação do setor transportes - destacando-se o veículo rodoviário individual - apresenta-se também como um possível fator que influencia o decréscimo da procura.

Consumo Total de Gasóleo Rodoviário [MWh/ano]

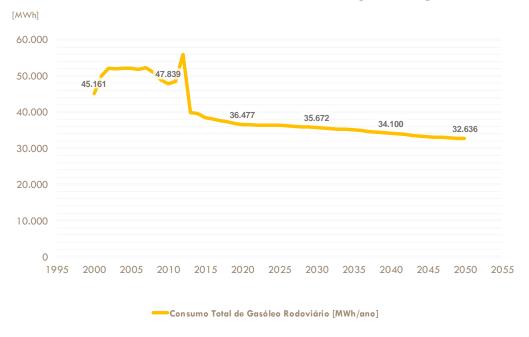


Figura 40 - Total de Gasóleo Rodoviário [MWh/ano]

O gráfico da figura 40 ilustra a evolução do consumo de gasóleo rodoviário ocorrido no município de Oleiros.

Neste gráfico é possível observar um aumento da procura no período compreendido entre 2000 e 2007, seguindo-se uma diminuição, até 2010. Após 2010 é ilustrado um pequeno crescimento da procura até 2013, seguido de uma diminuição até 2014. Ao longo do período de 2014 a 2050 os consumos de gasóleo rodoviário decrescem.

Este comportamento é impulsionado pelo aumento dos custos dos combustíveis, pela substituição por fontes de energia mais seguras e sustentáveis, pela implementação de políticas de eficiência energética e eventualmente por uma saturação do setor transportes.

Destaca-se ainda o mercado crescente dos veículos elétricos, em substituição de veículos convencionais a gasóleo e a gasolina.

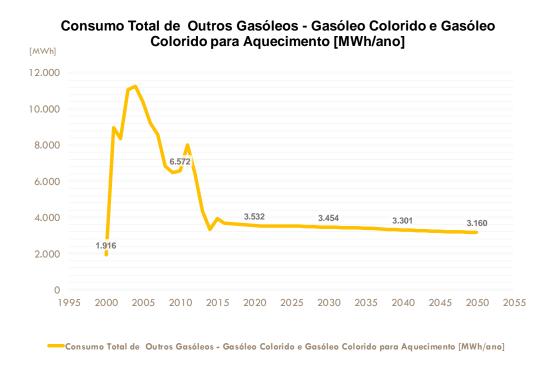


Figura 41 - Consumo Total de Outros Gasóleos [MWh/ano]

A figura 41 ilustra a evolução do consumo de outros gasóleos, para o período de 2000 a 2050.

Analisando o gráfico apresentado observa-se que o consumo de outros gasóleos apresenta um aumento acentuado de 2000 a 2004 seguindo-se um período de diminuição de consumo até 2014, com algumas oscilações. Após 2014 verifica-se um ligeiro aumento até 2015. De 2015 e até ao final do período em análise a utilização de outros gasóleos tende a diminuir moderadamente.

O aumento da taxa de penetração de energias renováveis em todos os setores de atividade vem também promover uma redução do uso de outros gasóleos, em particular no setor industrial.

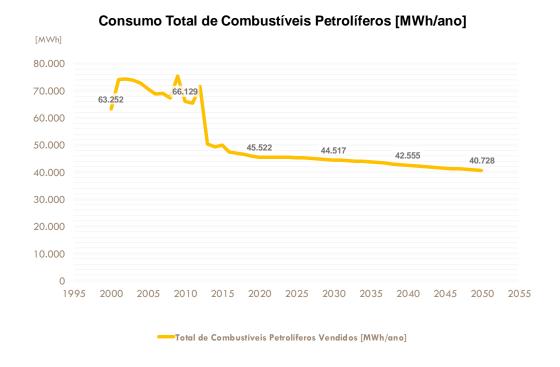


Figura 42 - Consumo Total de Combustíveis Petrolíferos [MWh/ano]

A figura 42 apresenta a representação gráfica do consumo total de combustíveis petrolíferos no município, que resulta do somatório dos consumos dos vetores energéticos: gás butano, gás propano, gás auto, gasolinas, gasóleo rodoviário, outros gasóleos e outros combustíveis petrolíferos (fuelóleo e petróleo).

Analisando a curva apresentada observa-se um aumento do uso de combustíveis petrolíferos de 2000 a 2002. Após 2002 a utilização desta tipologia de combustíveis diminui até 2010. De 2010 a 2013 observa-se um ligeiro aumento, com algumas oscilações. Após 2013 verifica-se uma diminuição da procura ao longo do restante período em análise.

A substituição do uso de combustíveis convencionais de origem petrolífera, por outros com menores custos, mais seguros e mais sustentáveis apresenta um impacto significativo na evolução do consumo total de combustíveis petrolíferos, em particular no setor dos transportes, o principal consumidor desta tipologia de combustíveis.

O aumento da penetração da produção de energia de origem renovável na indústria e no setor doméstico, assim como a eletrificação dos sistemas de aquecimento ambiente nos setores doméstico e de serviços, contribuem de igual modo para uma evolução decrescente do uso de petrolíferos.

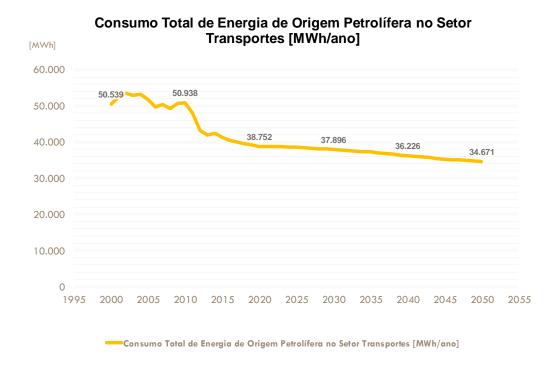


Figura 43 - Consumo Total de Energia de Origem Petrolífera no Setor Transportes [MWh/ano]

Na figura 43 observa-se a representação gráfica do consumo total de energia de origem petrolífera consumida pelo setor dos transportes.

De acordo com o gráfico apresentado verifica-se um aumento do uso de energia petrolífera em transportes de 2000 a 2010, observando-se oscilações ao longo deste período. Após 2010 a tendência geral é de redução da procura até ao final do período em análise, refletindo uma menor utilização destes combustíveis nos transportes e uma eventual saturação do setor.

O aumento dos preços dos combustíveis fósseis, a par das limitações às emissões de veículos de transporte impostas pela Comissão Europeia, tem motivado a indústria automóvel para a redução de consumos energéticos. Apesar de as melhorias de eficiência ao nível da tecnologia automóvel tenderem a ser mais visíveis a longo prazo, o peso significativo do custo dos combustíveis nos custos operacionais dos veículos de transporte vem acelerar a taxa de renovação de frotas. Desta forma, as melhorias da eficiência energética no setor dos transportes, abrangendo quer o transporte de passageiros quer o transporte de mercadorias, vêm moderar o impacte da crescente atividade no setor ao nível da procura de energia.

A substituição de veículos movidos a combustíveis convencionais por eletricidade e outros combustíveis menos poluentes contribui de igual modo para a evolução dos consumos apresentada na figura anterior.

Consumo Total de Energia do Setor Doméstico por Edifício de Habitação e por Alojamento

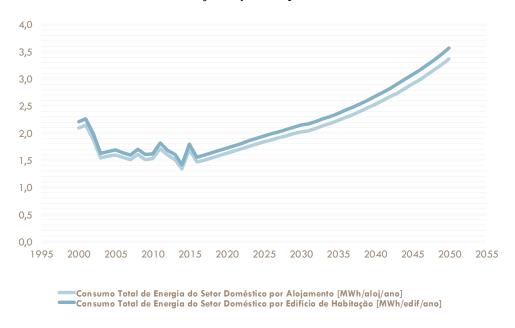


Figura 44 - Consumo Total de Energia do Setor Doméstico por Edifício de Habitação e por Alojamento [MWh/aloj/ano] [MWh/edif/ano]

Pela análise da figura 44 é possível comparar a evolução do consumo total de energia do setor doméstico por edifício de habitação e por alojamento.

As curvas apresentadas evidenciam um aumento do consumo total de energia do setor doméstico por alojamento e por edifício de habitação de 2000 a 2001, seguido de uma diminuição entre 2001 e 2015, apresentando, contudo, algumas oscilações durante este período. De 2015 a 2016 verifica-se um ligeiro aumento, seguido de uma diminuição até 2017. No período de 2017 até ao final do período em análise é observado um aumento dos consumos.

O aumento da melhoria da eficiência energética e da qualidade de habitação, assim como a adoção de comportamentos energeticamente mais eficientes levam a uma redução do consumo de energia no setor doméstico por edifício de habitação e por alojamento. No entanto, estes consumos tendem a aumentar, em resultando da crescente procura por conforto e crescente introdução de equipamentos elétricos e eletrónicos no setor poderá promover o aumento da procura energética evidenciado por estes indicadores.

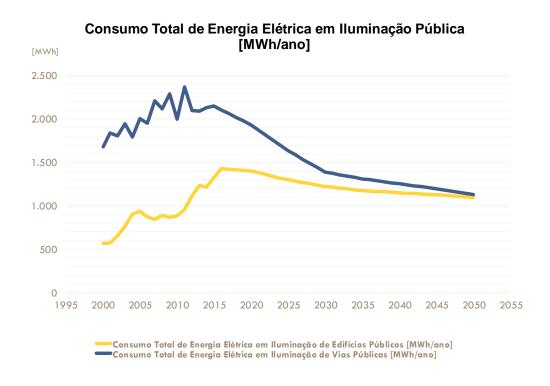


Figura 45 - Consumo Total de Energia Elétrica em Iluminação Pública [MWh/ano]

O gráfico agora apresentado é ilustrativo da evolução dos consumos de energia elétrica em iluminação pública, distinguindo-se duas curvas, uma referente ao consumo de energia elétrica em iluminação de edifícios públicos e outra ao consumo de energia elétrica em iluminação de vias públicas. Esta distinção justifica-se pelo facto de existirem diferenças significativas entre a iluminação de edifícios públicos e de vias públicas, tais como a tecnologia de conversão, a rigidez da utilização, os custos, a correlação com o ordenamento do território e a interligação com outras prioridades - segurança, no caso das vias públicas, atratividade, no caso dos edifícios públicos.

O consumo de energia elétrica em iluminação de edifícios públicos aumenta de 2000 a 2004, apresentado uma diminuição até 2010. Após 2010 o uso de eletricidade em edifícios públicos volta a aumentar até 2015. De 2015 a 2050 o consumo de energia elétrica em iluminação de edifícios públicos decresce.

O consumo de energia elétrica em iluminação de vias públicas aumentou entre 2000 e 2010, apresentando, contudo, algumas oscilações durante este período. Posteriormente, verificase uma diminuição do consumo até 2011. De 2011 a 2015 a utilização de eletricidade para iluminação de vias públicas aumenta, diminuindo no período seguinte, até 2050.

Esta tendência de diminuição dos consumos municipais de eletricidade estará, possivelmente, associada à implementação de equipamentos mais eficientes e à alteração de procedimentos e comportamentos, privilegiando a racionalização do uso de energia no setor municipal.

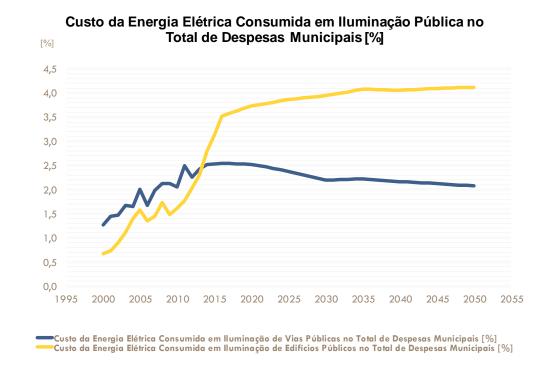


Figura 46 - Custo da Energia Elétrica Consumida em Iluminação Pública no Total de Despesas Municipais [%]

Na figura 46 observa-se a representação gráfica do custo da energia elétrica consumida em iluminação pública no total de despesas municipais. As curvas apresentadas foram traçadas determinando a percentagem que corresponde aos custos associados ao consumo de energia elétrica para iluminação pública, vias públicas e edifícios, relativamente ao total de despesas municipais.

Ao longo do período de 2000 a 2010 observa-se que o custo da energia elétrica em iluminação de edifícios públicos aumenta, de 2010 a 2012 decresce. De 2012 a 2015 observa-se um aumento, seguido de uma diminuição até 2016. No período de 2016 a 2035, verifica-se um aumento moderado dos consumos estabilizando de 2035 até 2050.

Relativamente ao custo da energia elétrica em iluminação de vias públicas, observa-se que o peso desta fatura no total de despesas municipais aumenta até 2008. De 2008 a 2010 observa-se uma diminuição dos consumos. De 2010 até ao final do período em análise é notória uma inversão desta tendência.

A tendência de crescimento do custo da energia elétrica em iluminação de edifícios públicos ao longo do período prospetivo leva a concluir acerca do aumento dos custos da energia elétrica, associado à tendência a médio prazo de diminuição da despesa municipal, dado o crescimento da curva apresentada e considerando que os consumos energéticos tendem a diminuir (figura 45).

Consumo Total de Energia por Trabalhador por Conta de Outrem no Setor Industrial e Serviços [MWh/trab/ano]

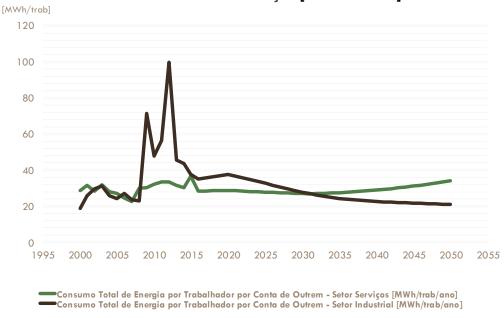


Figura 47 - Consumo Total de Energia por Trabalhador por Conta de Outrem no Setor Industrial e Serviços [MWh/trab/ano]

Na figura 47 apresenta-se a evolução dos consumos totais de energia por despesa média anual dos trabalhadores por conta de outrem, nos setores industrial e serviços. Ambos os indicadores energéticos são obtidos pelo quociente entre o consumo total de energia do respetivo setor e o número de trabalhadores por conta de outrem em cada um dos setores de atividade.

Relativamente ao consumo total de energia por trabalhador por conta de outrem em atividades de serviços este indicador apresenta uma diminuição, com algumas oscilações, de 2000 a 2008. De 2008 a 2015 observa-se um aumento dos consumos, seguido de um decréscimo té 2016. Após 2016 verifica-se uma tendência de aumento no restante período em análise.

Analisando a curva representada, observa-se que o consumo total de energia por trabalhador por conta de outrem em atividades industriais aumenta de 2000 a 2003, diminuindo no período seguinte até 2009, apresentando, contudo, algumas oscilações. No período de 2009 a 2013 observa-se um aumento do indicador, seguido de uma diminuição até 2015. Após 2015 verifica-se um aumento dos consumos até 2020, seguindo-se uma tendência de diminuição até 2050.

A tendência de decréscimo destes indicadores reflete a expectável redução da intensidade energética em ambos os setores, associada à utilização de novas tecnologias, mais eficientes.

Consumo Total de Energia no Setor Agrícola por Custo do Trabalho [MWh/€/ano] [MWh/€] 15,1 14,5 12,2 10,7 10,1

Figura 48 - Consumo Total de Energia no Setor Agrícola por Custo do Trabalho [MWh/€/ano]

Consumo Total de Energia no Setor Agrícola por Custo do Trabalho [MWh/€/ano]

Na figura 48 apresenta-se a evolução do consumo total de energia no setor agrícola, por custo do trabalho de 2000 a 2050.

O gráfico apresenta um aumento de 2000 a 2005, seguido de um decréscimo até 2010. De 2010 a 2011 ocorre um aumento dos consumos e posteriormente um decréscimo até 2015 No período pós 2016 observa-se uma diminuição do consumo total de energia no setor agrícola, por custo do trabalho. Esta evolução decrescente apresentada deverá ser motivada pelo expectável de aumento da eficiência energética no setor agrícola.

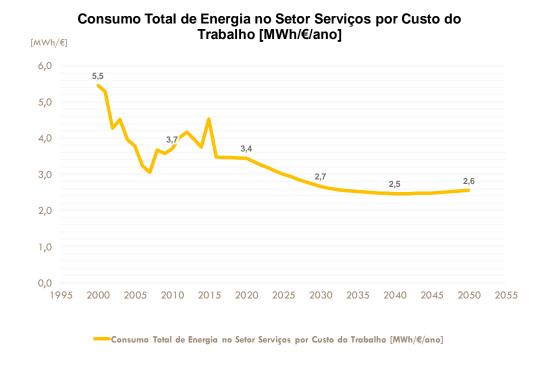


Figura 49 - Consumo Total de Energia no Setor Serviços por Custo do Trabalho [MWh/€/ano]

Na figura 49 está representado o consumo total de energia no setor serviços por custo do trabalho.

Pela análise do gráfico verifica-se uma redução acentuada do consumo de energia no setor serviços por custo do trabalho de 2000 a 2006, em cerca de 50%. Após 2005 observa-se um aumento deste indicador até 2015, apresentando, contudo, algumas variações nos consumos. De 2015 a 2020 verifica-se um ligeiro aumento, decrescendo nos anos seguintes, até 2040. Após 2040 a tendência é um aumento moderado até 2050.

Esta tendência de diminuição deverá ser impulsionada, previsivelmente, pelo aumento da eficiência energética no setor serviços.

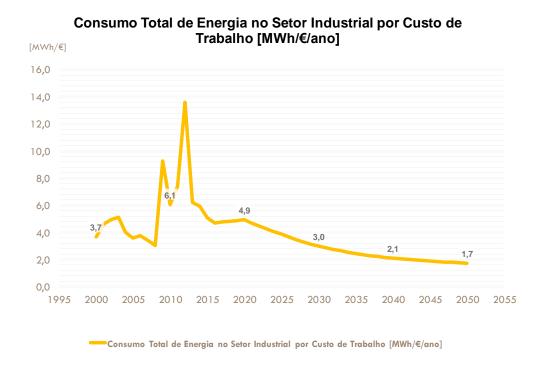


Figura 50 - Consumo Total de Energia no Setor Industrial por Custo de Trabalho [MWh/€/ano]

Na figura 50 está representado o consumo total de energia no setor industrial por custo do trabalho.

Pelo gráfico apresentado verifica-se um aumento do consumo no setor indústria por custo do trabalho de 2000 a 2004, seguido de um decréscimo até 2008. No período de 2008 a 2013 observa-se um aumento, apresentando, contudo, algumas oscilações. Após 2013 até 2016 o indicador em análise diminui, voltando a aumentar até 2020. No período de 2020 a 2050 observa-se um decréscimo do consumo de energia no setor industrial por custo do trabalho.

A redução deste indicador deverá estar associada ao aumento da eficiência energética, procurando-se uma utilização de energia inferior, com maior atividade desenvolvida.

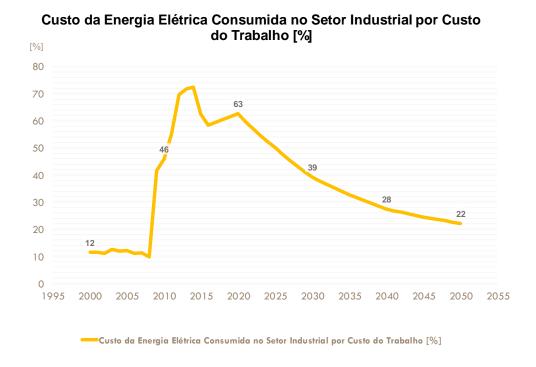


Figura 51 - Custo da Energia Elétrica Consumida no Setor Industrial por Custo do Trabalho [MWh/€/ano]

Na figura 51 está representado o custo da energia elétrica no setor industrial por custo do trabalho.

Pelo gráfico apresentado verifica-se uma ligeira diminuição de 2000 a 2008 do custo da energia elétrica no setor industrial por custo do trabalho, com pequenas oscilações. No período de 2008 a 2020 observa-se um aumento significativo dos consumos, com uma redução pontual entre 2015 a 2017 Entre 2020 a 2050 o indicador em análise apresenta uma redução de cerca de 60%.

A diminuição do custo da eletricidade consumida na indústria por custo do trabalho pode evidenciar um eventual aumento de eficiência no setor industrial e/ou uma eventual redução do custo de eletricidade.

Desagregação subsetorial de consumos

Ilustra-se de seguida a desagregação subsetorial de consumos de energia elétrica e combustíveis petrolíferos para o ano de 2016. No período em análise não foram identificados consumos de gás natural no município.

O quadro 1 é referente à desagregação do consumo de energia elétrica por subsetor consumidor. Esta desagregação põe em evidência a elevada necessidade energética para o indústrias da madeira e cortiça.

Quadro 1 - Consumo de Energia Elétrica por Subsetor (2016).

Setor	Consumo de Eletricidade [MWh/ano]
Indústrias da madeira e cortiça	11 671
Consumo doméstico	5 547
lluminação vias públicas e sinalização semafórica	2 106
Administração pública, defesa e segurança social obrigatória	1 431
Outras atividades de serviços pessoais	524
Organizações associativas	362
Telecomunicações	277
Recolha, drenagem e tratamento de águas residuais	232
Restauração e similares	225
Comércio a retalho, exceto automóveis e motociclos	209
Apoio social com alojamento	123
Atividades de serviços financeiros	117
Educação	82
Agricultura, produção animal	50
Fabricação de produtos metálicos	47
Fabricação de produtos químicos	44
Indústrias alimentares	38
Comércio, manutenção e reparação de automóveis e motociclos	30
Comércio por grosso, exceto automóveis e motociclos	22
Apoio social sem alojamento	22
Promoção imobiliária e construção	20
Atividades postais e de courier	19
Serviços administrativos e de apoio às empresas	15
Fabricação de outros produtos minerais não metálicos	13
Alojamento	13
Indústria das bebidas	13
Silvicultura	9,3
Atividades auxiliares de serviços financeiros e seguros	5,5
Reparação, manutenção e instalação de máquinas	5,5
Atividades especializadas de construção	5,0

Setor	Consumo de Eletricidade [MWh/ano]
Electricidade, gás, vapor, água quente e fria e ar frio	3,9
Atividades de saúde humana	3,9
Indústrias metalúrgicas de base	3,3
Fabricação de máquinas e de equipamentos, n.e.	2,9
Recolha, tratamento e eliminação de resíduos	2,7
Atividades de aluguer	2,4
Outras indústrias extrativas	2,1
Outras indústrias transformadoras	1,8
Indústria do vestuário	1,4
Atividades desportivas, de diversão e recreativas	1,4
Atividades imobiliárias	1,0
Captação, tratamento e distribuição de água	0,27
Fabrico de mobiliário e de colchões	0,19
Armazenagem e atividades auxiliares dos transportes	0,12

A desagregação de vendas de combustíveis petrolíferos por subsetor consumidor em 2016 é apresentada no quadro 2. Como ilustrado, o subsetor transportes terrestres e por oleodutos ou gasodutos é o principal consumidor desta tipologia de fontes de energia.

Quadro 2 - Vendas de Combustíveis Petrolíferos por Subsetor (2016).

Setor	Combustíveis Petrolíferos Vendidos [MWh/ano]
Transportes terrestres e por oleodutos ou gasodutos	36 359
Agricultura, produção animal	3 297
Consumo doméstico	1 454
Apoio social com alojamento	798
Administração pública, defesa e segurança social obrigatória	638
Comércio a retalho, exceto automóveis e motociclos	390
Atividades de saúde humana	200
Educação	146
Apoio social sem alojamento	130
Restauração e similares	13
Promoção imobiliária e construção	2,0

Comparação de indicadores de Oleiros com Portugal Continental

Neste capítulo apresenta-se uma breve análise comparativa do desempenho energético de Oleiros com Portugal Continental.

Quadro 3 - Comparação dos principais indicadores energéticos de Oleiros com Portugal Continental (2016).

Setor	Concelho de Oleiros	Portugal
Intensidade Energética [MWh/M€]	1 039	812
Consumo de Energia por Habitante [MWh/hab]	14	14
Consumo Total de Energia Elétrica no S. Doméstico por Habitante [MWh/hab]	1,1	1,3
Consumo Total de Energia Elétrica do S. Doméstico por Alojamento [MWh/aloj]	1,2	2,3
Consumo Gás Natural no S. Doméstico por Habitante [kWh/hab]	0,00	301
Intensidade Energética dos Serviços [MWh/M€]	234	183
Consumo Total de Energia nos Serviços por Trabalhador [MWh/trab]	28	17
Custos da Energia Elétrica Consumida nos Serviços por Custo do Trabalho [%]	15	13
Consumo de Gás Natural nos Serviços por VAB Terciário [MWh/M€]	0,00	25
Intensidade Energética Industrial [MWh/M€]	728	1 429
Consumo Total de Energia na Indústria por Trabalhador [MWh/trab]	35	70
Custos da Energia Elétrica na Indústria por Custo do Trabalho [%]	58	28
Intensidade Energética dos Transportes Rodoviários [MWh/M€]	593	280
Consumo de Energia em Transportes Rodoviários por Habitante [MWh/hab]	7,8	5,0
Consumo Energético em lluminação Pública por Receitas do Município [MWh/1000€]	0,67	0,54

Matriz de Emissões

A matriz de emissões de CO₂ constitui o principal resultado do inventário de referência de emissões, ao quantificar as emissões de CO₂ resultantes do consumo de energia ocorrido na área geográfica do município de Oleiros e ao identificar as principais fontes destas emissões.

Nota Metodológica

A metodologia adotada para determinar as emissões de CO₂ é baseada nas recomendações do Joint Research Centre para a execução dos Planos de Ação para a Energia Sustentável. Como tal, os cenários apresentados são determinados por aplicação de fatores de emissão aos cenários resultantes da execução da matriz energética, tendo-se optado pela utilização de fatores de emissão standard, em linha com os princípios do IPCC.

No âmbito da execução da matriz de emissões propõem-se cenários de evolução da procura energética e respetivas emissões para um horizonte temporal que se encerra em 2050.

Emissões Setoriais

As figuras abaixo são referentes às emissões de CO₂ por setor de atividade consumidor de energia para os anos 2016, 2020, 2030 e 2050.

Os valores de emissão apresentados são referentes aos setores: doméstico, industrial, agrícola, serviços e transportes. Deste modo, é possível observar a evolução das emissões de CO₂ para cada setor tendo em conta o consumo total de energia, ao longo do período de projeção.

Observando o gráfico apresentado na figura 52 verifica-se uma predominância das emissões resultantes da atividade do setor transportes no ano 2016, representando 48% do total de emissões, seguido do setor industrial e do setor de serviços, com 19% e 18% das emissões, respetivamente.

Emissões de CO₂ por Setor de Atividade (2016)

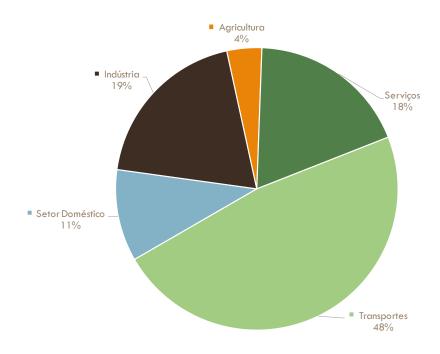


Figura 52 - Emissões de CO₂ por Setor de Atividade em 2016 [%]

Emissões de CO₂ por Setor de Atividade (2020)

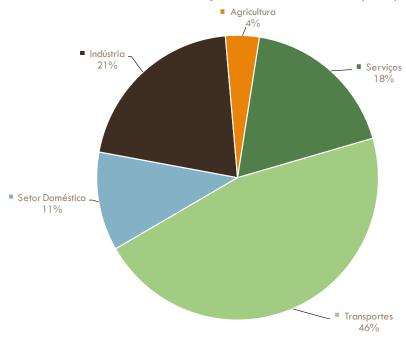


Figura 53 - Emissões de CO₂ por Setor de Atividade em 2020 [%]

Emissões de CO₂ por Setor de Atividade (2030)

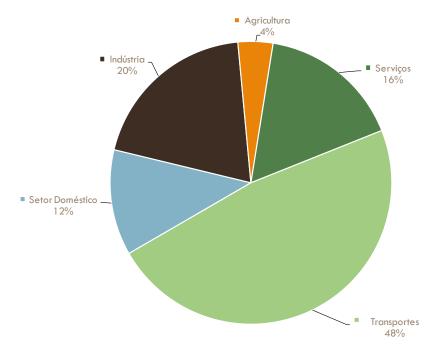


Figura 54 - Emissões de CO₂ por Setor de Atividade em 2030 [%]

Emissões de CO₂ por Setor de Atividade (2050)

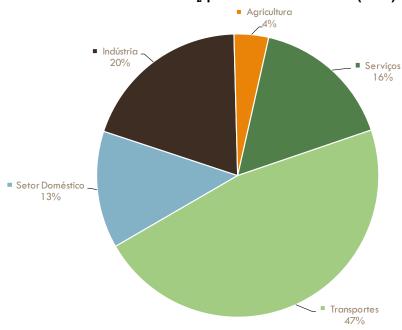


Figura 55 - Emissões de CO₂ por Setor de Atividade em 2050 [%]

Emissões por Vetor Energético

As figuras seguintes são referentes às emissões de CO₂ por vetor energético consumido nos anos 2016, 2020, 2030 e 2050. Os valores de emissão apresentados respeitam às vendas dos vetores energéticos: energia elétrica, gás natural, gases butano e propano, gasolinas e gás auto, gasóleo rodoviário, gasóleo colorido entre outros combustíveis de uso maioritariamente industrial. Deste modo, é possível observar a evolução das emissões de CO₂ por vetor energético tendo em conta o consumo total de energia, ao longo do período de projeção.

Pela análise da figura 56 observa-se que cerca de 48% das emissões de CO₂ têm origem em consumo de gasóleo rodoviário e 41% em consumos de eletricidade. A utilização de gasóleos coloridos corresponde a 5% das emissões de CO₂.

Emissões de CO₂ por Vetor Energético Consumido (2016)

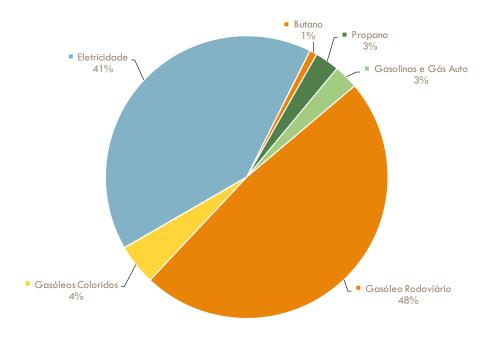


Figura 56 - Emissões de CO₂ por Vetor Energético Consumido em 2016 [%]

Emissões de CO₂ por Vetor Energético Consumido (2020)

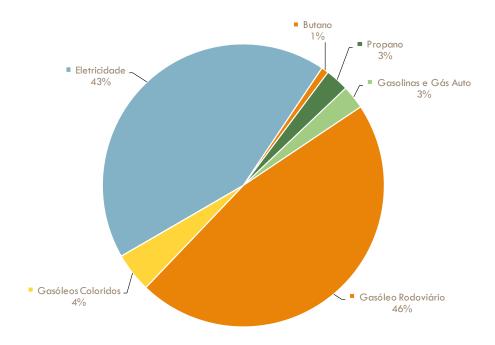


Figura 57 - Emissões de CO₂ por Vetor Energético Consumido em 2020 [%]

Emissões de CO₂ por Vetor Energético Consumido (2030)

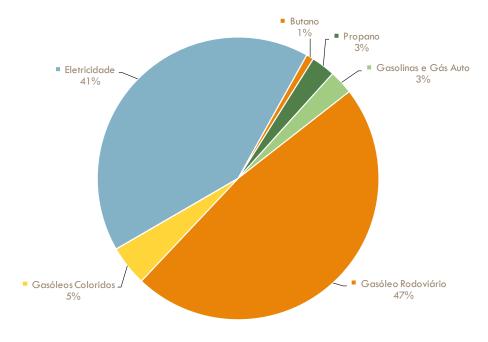


Figura 58 - Emissões de CO₂ por Vetor Energético Consumido em 2030 [%]

Emissões de CO₂ por Vetor Energético Consumido (2050)

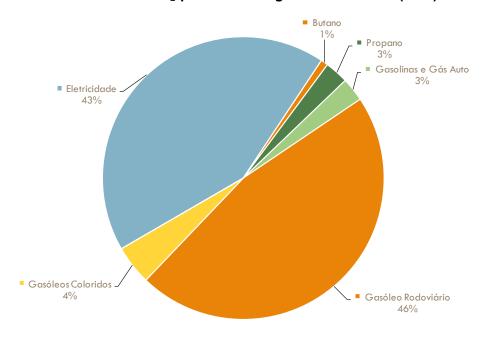


Figura 59 - Emissões de CO₂ por Vetor Energético Consumido em 2050 [%]

Produção endógena de energia

A situação de escassez que caracteriza os combustíveis fósseis associada à instabilidade dos mercados enfatiza a necessidade de recorrer a fontes de energia renováveis. Em Portugal a produção energética com recurso às energias hídrica, eólica e da biomassa com cogeração, já atingiu um estado de maturidade que permite que estas fontes sejam competitivas e que se destaquem das restantes ao nível da produção de energia anual.

Apresentam-se seguidamente os valores de produção renovável de energia elétrica e térmica em Portugal no ano de 2016 (quadro 4) e a respetiva repartição por fonte energética (figura 60).

Quadro 4 - Produção Renovável de Energia em Portugal Continental por Fonte Energética (2016)

	Portugal
Energia Hídrica [MWh/ano]	16 773 221
Energia Eólica [MWh/ano]	12 316 523
Biomassa [MWh/ano]	4 317 424
RSU [MWh/ano]	558 000
Biogás [MWh/ano]	693 150
Energia Fotovoltaica [MWh/ano]	788 302
Total [MWh/ano]	35 446 621

Produção Renovável de Energia em Portugal por Fonte Energética em 2016 [%]

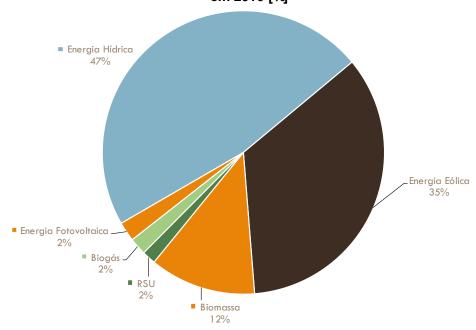


Figura 60 - Repartição da Produção Renovável de Energia em Portugal por Fonte Energética em 2016 [%])

No caso concreto de Oleiros, no ano de 2016 foram produzidos 448.147 MWh/ano de energia renovável, com recurso a energia eólica (quadro 5 e figura 61).

Quadro 5 - Produção Renovável de Energia Elétrica no Concelho de Oleiros por Fonte Energética (2016)

	Concelho de Oleiros
Energia Hídrica [MWh/ano]	0,00
Energia Eólica [MWh/ano]	448.147
Biomassa [MWh/ano]	0,00
RSU [MWh/ano]	0,00
Biogás [MWh/ano]	0,00
Energia Fotovoltaica [MWh/ano]	0,00
Total [MWh/ano]	448.147

Produção Renovável de Energia por Fonte Energética no Município em 2016 [%]

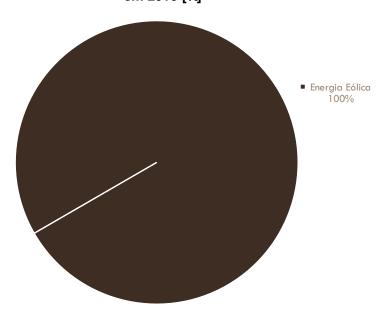


Figura 61 - Repartição da Produção Renovável de Energia no Concelho de Oleiros por Fonte Energética em 2016 [%])

